

2020/2/19

- CASE EXAMPLE -

DC Magnetron Sputtering

<u>Model</u>

DC Magnetron Sputtering

Neutral Gas Density

Magnetic Field

Color : Norm of the vector Lines : Magnetic Flux

Plasma Density (1)

Wave FRONT DC Magnetron Sputtering

- ✓ Magnetic field traps electrons.
- Ar⁺ distribution is same as electron.

Plasma Density (2)

 \checkmark More Ar⁺ ion is near the target than electron. (**Ion Sheath**)

Voltage and Electric Field (1)

DC Magnetron Sputtering

WAVE FRONT

Voltage and Electric Field (2)

- ✓ Voltage in plasma is almost zero. (a little positive)
- ✓ Ar⁺ ion has 500 eV at maximum, if the ion is accelerated by the electric field in plasma sheath and collide the target.

Electron Flow Velocity

Ion Flow Velocity

✓ Ar⁺ ion moves along the electric field and the velocity is small because ion is heavy.

EoM of particle

Plasma Temperature*

Ar⁺ Ion Temperature Electron Temperature (kT)(kT)ave_temp_ele [eV] ave_temp_Ar_p [eV] 4.872e+001 9.887e+001 7.415e+001 3.654e+001 2.436e+001 4.943e+001 2.472e+001 1.218e+001 0.000e+000 0.000e+000 Incident Ar⁺ ion to the target is cool. 1 [eV] ≒ 11600 [K] (vector direction is aligned) * Same as variance of Maxwell velocity here.

Plasma Energy

Electron Energy

Ar⁺ Ion Energy

- Background gas is ionized by electron with high energy. \checkmark
- \checkmark Ar⁺ ions with high energy collide to target.

Copyright © 2020 Wave Front Co., Ltd. All Rights Reserved.

 $1 [eV] = 1.602 \times 10^{-19} [J]$

Incident Energy

Histograms of Incident Ions

DC Magnetron Sputtering

Erosion Rate and Density

Number Density of Ti

- ✓ Ti atoms emitted from the target diffuse by collision with Ar, which is background gas.
- \checkmark Ti atoms entered into substrate deposit a film.